POLYOLEFINS AND
PVC GUIDELINES POP205

Water Jet Cleaning of
Plastics Pipes
ISSUE 1.2 / JULY 2009

0
 PIPA

Water Jet Cleaning of Plastics Pipes

The practice of high-pressure water jet cleaning internal pipeline surfaces is very common, but, if not properly managed, water emitted under high-pressure through a jet nozzle has the potential to damage any pipe surface, including those manufactured from plastics, metallic, ceramic and concrete materials. Where the use of excessive pressure and inappropriate techniques has caused damage to pipelines, this reflects unfairly on the materials from which the pipes are manufactured.

In the United Kingdom, a comprehensive Code of Practice produced by WRc ${ }^{(1)}$ deals in detail with all aspects of high pressure sewer jetting. PIPA encourages asset owners and water jet operators involved in regular water jetting processes to avail themselves of this publication which may be ordered in hard copy from WRC Swindon, Wiltshire, UK, obtainable from the web site www.webookshop.com as the WRC website does not list the publication.

These guidelines have been prepared for the jetting of plastics pipe systems, to provide information based on experience and research, as to the maximum pressures that may be used to avoid damage to plastics pipes in good condition. They do not provide detailed instructions on water jet cleaning procedures and are not intended to replace the pipe manufacturers' specific recommendations, which should be sought in the first instance.

NOZZLE TYPE

Research conducted by Loughborough University in the UK and published by The European Plastic Pipes and Fittings Association ${ }^{(2)}$ concludes that large diameter jet holes (2.4-2.8mm diameter) operating at a lower nozzle pressure ($12,000 \mathrm{kPa}$), are more effective at clearing debris and far less likely to cause pipe damage than higher pressure cleaning with small diameter jets (typically ~1.0mm).

- The external surface of the nozzle should be smooth.
- Nozzles with jet holes around the circumference are preferred.
- Nozzles with flailing chains, wires or aggressively rotating nozzles should not be used.

JET ANGLE

Nozzles with forward facing jets should be fitted with drain bars to reduce the likelihood of the nozzle turning inside the pipeline. The water jet discharge angle should be between 6° and 15° relative to the axis of the pipe. (See Figure A.)

STANDOFF DISTANCE

Whenever possible, a minimum standoff distance between the water jet orifice and the inner pipe wall of 25 mm should be maintained. (See Figure A.) If necessary, jetting/swabbing sleds with several runners may be used to ensure the standoff distance is maintained. It is acknowledged however, that the small internal diameter of many pipelines will prevent the use of sleds.

PIPA

FIGURE A - JET ANGLE DETAIL

MAXIMUM HOLD TIME AND NOZZLE SPEED

The maximum time a nozzle is permitted to remain stationary in a pipeline should not exceed 60 seconds. The forward/backward movement speed of the nozzle should be limited to between 6 and 12 metres / minute.

MAXIMUM PRESSURE AT THE NOZZLE

Table 1
Maximum recommended jetting pressures

PIPE MATERIAL	MAXIMUM RECOMMENDED PRESSURE FOR PIPES IN GOOD CONDITIONS
PVC-U, PVC-M	$12,000 \mathrm{kPa}$
ABS	$12,000 \mathrm{kPa}$
PE	$12,000 \mathrm{kPa}$
PP	$12,000 \mathrm{kPa}$
GRP*	$8,000 \mathrm{kPa}$

* Refer to GRP pipe manufacturer for specific recommendations regarding water jet nozzle configuration.

To maintain the appropriate nozzle pressure, allowance should be made for friction losses in the flexible water supply hose. Adjustment of pump gauge pressure based on hose size, length and flow rate is required.

Tables $2,3,4$ and 5 provide an indication of the anticipated pressure drop in kPa for flexible pressure hoses in lengths up to 150 metres at nominated flow rates. Table data source is TEPPFA (The European Plastic Pipes and Fittings Association).

Table 2
Pressure loss in 12 mm hose due to friction at various flow rates and lengths
12mm Nominal Bore Flexible Hose

FLOW RATE	LENGTH OF HOSE (METRES)							
LITRES/MINUTE	$\mathbf{1 0}$	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	
25	50	125	250	375	500	625	750	
50	280	700	1,400	2,100	2,800	3,500	4,200	
80	700	1,750	3,500	5,250	7,000	8,750	10,500	

Table 3
Pressure loss in 20 mm hose due to friction at various flow rates and lengths
20mm Nominal Bore Flexible Hose

| FLOW RATE | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LITRES/MINUTE | $\mathbf{1 0}$ | $\mathbf{2 5}$ | $\mathbf{5 0}$ | $\mathbf{7 5}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ | $\mathbf{1 5 0}$ |
| 50 | 10 | 25 | 50 | 75 | 100 | 125 | 150 |
| 80 | 70 | 175 | 350 | 525 | 700 | 875 | 1,050 |
| 100 | 110 | 275 | 550 | 825 | 1,100 | 1,375 | 1.650 |
| 120 | 160 | 400 | 800 | 1,200 | 1,600 | 2,000 | 2,400 |
| 140 | 220 | 550 | 1,10 | 1,650 | 2,200 | 2,750 | 3,330 |
| 150 | 250 | 625 | 1,250 | 1,875 | 2,500 | 3,125 | 3,750 |
| 180 | 440 | 1,100 | 2,200 | 3,300 | 4,400 | 5,500 | 6,600 |

Table 4
Pressure loss in 25 mm hose due to friction at various flow rates and lengths

25mm Nominal Bore Flexible Hose

| FLOW RATE | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LITRES/MINUTE | $\mathbf{1 0}$ | $\mathbf{2 5}$ | $\mathbf{5 0}$ | $\mathbf{7 5}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ | $\mathbf{1 5 0}$ |
| 150 | 80 | 200 | 400 | 600 | 800 | 1,000 | 1,200 |
| 180 | 120 | 300 | 600 | 900 | 1,200 | 1,500 | 1,800 |
| 200 | 150 | 375 | 750 | 1.125 | 1,500 | 1.875 | 2,250 |
| 250 | 230 | 575 | 1,150 | 1,725 | 2,300 | 2,875 | 3,450 |
| 300 | 340 | 850 | 1,700 | 2,550 | 3,400 | 4,250 | 5,100 |

PIPA

Table 5
Pressure loss in 32 mm hose due to friction at various flow rates and lengths

32mm Nominal Bore Flexible Hose

| FLOW RATE | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LITRES/MINUTE | $\mathbf{1 0}$ | $\mathbf{2 5}$ | $\mathbf{L E}$ LENGTH OF HOSE (METRES) | $\mathbf{5 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ | $\mathbf{1 5 0}$ |
| 250 | 70 | 175 | 350 | 525 | 700 | 875 | 1,050 |
| 300 | 100 | 250 | 500 | 750 | 1,000 | 1,250 | 1,500 |
| 350 | 130 | 325 | 650 | 975 | 1,300 | 1,625 | 1,950 |
| 400 | 180 | 450 | 900 | 1,350 | 1,800 | 2,250 | 2,700 |
| 450 | 230 | 575 | 1,150 | 1,725 | 2,300 | 2,875 | 3,450 |

EXAMPLE

A nozzle jetting pressure of $12,000 \mathrm{kPa}$ has been selected to clear a blockage requiring 50 metres of 20 mm ID flexible hose. At a flow rate of 120 litres per minute, what is the required pump gauge pressure?

Given:

Required nozzle pressure $12,000 \mathrm{kPa}$
Required hose length 50 metres
Hose ID 20mm
Required flow rate $120 \mathrm{I} / \mathrm{min}$.
From Table 3,
a 50 -metre-long $\times 20 \mathrm{~mm}$ ID hose at $120 \mathrm{I} / \mathrm{min}$ flow produces 800 kPa friction loss.
$\therefore 12,000 \mathrm{kPa}+800 \mathrm{kPa}=12,800 \mathrm{kPa}$ gauge pressure at the pump.

REFERENCES

1. Lambert, J; Orman, N. R; Cant, J; Trew, J; Moy, F; Drinkwater, A (2005) Sewer Jetting Code of Practice, 2nd Edition, WRc Swindon, August 2005.
2. TEPPFA (2006) The Plastic Pipes and Fittings Industry, Best Practice for effective jetting of sewer pipes, a publication by The European Plastic Pipes and Fittings Association (TEPPFA), Brussels.

PO Box 957 North Lakes Q 4509
E plasticspipe@pipa.com.au
P +61 (0) 459919437
pipa.com.au

Disclaimer

In formulating this guideline PIPA has relied upon the advice of its members and, where appropriate, independent testing.
Notwithstanding, users of the guidelines are advised to seek their own independent advice and, where appropriate, to conduct their own testing and assessment of matters contained in the guidelines, and to not rely solely on the guidelines in relation to any matter that may risk loss or damage.

PIPA gives no warranty concerning the correctness or accuracy of the information, opinions and recommendations contained in the guidelines. Users of the guidelines are advised that their reliance on any matter contained in the guidelines is at their own risk.

